Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 23(8)2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-30060449

RESUMO

BACKGROUND: the gamma-emitting radionuclide Technetium-99m (99mTc) is still the workhorse of Single Photon Emission Computed Tomography (SPECT) as it is used worldwide for the diagnosis of a variety of phatological conditions. 99mTc is obtained from 99Mo/99mTc generators as pertechnetate ion, which is the ubiquitous starting material for the preparation of 99mTc radiopharmaceuticals. 99Mo in such generators is currently produced in nuclear fission reactors as a by-product of 235U fission. Here we investigated an alternative route for the production of 99Mo by irradiating a natural metallic molybdenum powder using a 14-MeV accelerator-driven neutron source. METHODS: after irradiation, an efficient isolation and purification of the final 99mTc-pertechnetate was carried out by means of solvent extraction. Monte Carlo simulations allowed reliable predictions of 99Mo production rates for a newly designed 14-MeV neutron source (New Sorgentina Fusion Source). RESULTS: in traceable metrological conditions, a level of radionuclidic purity consistent with accepted pharmaceutical quality standards, was achieved. CONCLUSIONS: we showed that this source, featuring a nominal neutron emission rate of about 1015 s-1, may potentially supply an appreciable fraction of the current 99Mo global demand. This study highlights that a robust and viable solution, alternative to nuclear fission reactors, can be accomplished to secure the long-term supply of 99Mo.


Assuntos
Molibdênio/química , Radioisótopos/química , Tecnécio/química , Ciclotrons/instrumentação , Fissão Nuclear , Compostos Radiofarmacêuticos , Pertecnetato Tc 99m de Sódio , Tomografia Computadorizada de Emissão de Fóton Único
2.
Environ Sci Process Impacts ; 17(2): 300-15, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25341186

RESUMO

A significant portion of the particulate matter is the total carbonaceous fraction (or total carbon, TC), composed of two main fractions, elemental carbon (EC) and organic carbon (OC), which shows a large variety of organic compounds, e.g. aliphatic, aromatic compounds, alcohols, acids, etc. In this paper, TC, EC and OC concentrations determined in a downtown Rome urban area are discussed considering the influence of meteorological conditions on the temporal-spatial aerosol distribution. Similar measurements were performed at ENEA Casaccia, an area outside Rome, which is considered as the ome background. Since 2000, TC, EC and OC measurements have been performed by means of an Ambient Carbon Particulate Monitor equipped with a NDIR detector. The EC and OC concentrations trends are compared with benzene and CO trends, which are specific indicators of autovehicular traffic, for identifying the primary EC and OC contributions and the secondary OC fraction origin. Further, a chemical investigation is reported for investigating how the main organic (i.e., n-alkanes, n-alkanoic acids, polyaromatic hydrocarbons and nitro-polyaromatic hydrocarbons) and inorganic (i.e., metals, ions) fractions vary their levels during the investigated period in relationship to new regulations and/or technological innovations.


Assuntos
Poluentes Atmosféricos/análise , Carbono/análise , Monitoramento Ambiental , Cidade de Roma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...